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ABSTRACT

A differential model is proposed for the pure flow
of polycrystalline ice. The theory is based on the con-
cept of state variables and accounts for two defor-
mation-rate  echanisms: (i) transient [flow,
associated with zenerally reversible isotropic and ki-
nematic harden’'ng, and (ii) steady-state flow, asso-
ciated with irreversible viscous deformation.
Dimensional reyuirements for creep as well as con-
stamt deformation-rate stress-strain response are
satisfied. Correspondence is established between
constant-stress creep and constant strain-rate tests.
The uniaxial model contains a total of six parame-
ters and follows experimental data on the creep of
Jresh-water polycrystalline ice obtained by Jacka
(1984), Sinha ('978), and Brill and Camp (repro-
duced in Sinha, 1979).

1. INTRODUCTION

Boundary valie problems in applied ice mechan-
ics involving multiaxial states of stress and complex
loading histories, such as those encountered during
ice-structure interaction, are increasingly being
solved using numerical models including the finite
element method (Jordaan, 1986). Constitutive
models are required to characterize the ice defor-
mation by viscoelastic flow in numerical
simulations.

In problems where only “steady-state™ flow is of
interest, an elastic power-law creep model of ice
(sometimes without the elastic component) is ade-
quate. Glen’s (1955) power-law is commonly used
in engineering applications where compressive

stresses lie in the range of 0.2 to 2 MPa. Palmer
(1967) has presented the multiaxial generalization
of the power-law for incompressible flow of iso-
tropic ice. By defining a scalar-valued potential
function for power-law creep that is analogous to
the Hill-criterion of plastic yield, Shyam Sunder et
al. (1987) have presented an orthotropic model of
incompressible flow.

Both the clastic and “transient” flow behavior of
ice, however, are of great importance in a broad
range of ice mechanics problems (Gold, 1977, Sinha
etal., 1987). Several investigators have studied this
problem in recent years. For example, Sinha (1978,
1979) has proposed a creep-compliance function for
fresh-water polycrystalline (S-2) ice that is nonlin-
early dependent on time. For loading conditions
other than constant-stress creep, Sinha (1983)
adopts a particular generalization of Boltzmann’s
superposition principle. On the other hand, Le Gac
and Duval (1980) have proposed multiaxial con-
stitutive relations based on state variable theory for
modeling the isotropic and kinematic hardening
phenomena governing nonelastic deformation in
polycrystalline ice. Considering deformation mech-
anisms in ice, Ashby and Duval (1985) have sub-
sequently developed a spring—-dashpot model based
on a two-bar truss analogy which they show to be
equivalent to a kinematic hardening model.

Constitutive models for describing isotropic and
kinematic hardening in materials undergoing de-
formation originated from the work of Hill (1950),
Prager (1955) and Hodge (1957) on incremental
visco-plasticity. More recent developments based on
state variable theory are associated with Chaboche
and Rousselier (1983), Miller (1976), and Hart
(1976). Le Gac and Duval (1980) explicitly refer
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to the work of Hart (1976) and Miller (1976) in
the development of their model.

This paper presents a differential model for the
deformation of polycrystalline ice, Flow (or creep)
is modeled in terms of two nonlinear deformation-
rate mechanisms: the first mechanism governs the
transient deformation-rate (also called “primary”
creep under constant-stress loading) which decays
to zero as both an internal elastic back-stress and a
drag-stress measure increase asymptotically; the
second mechanism, which is modeled in terms of
the well-known power-law, governs the steady-state
viscous deformation-rate. The evolution of the back-
or rest-stress contributes to kinematic hardening,
while that of the drag-stress contributes to isotropic
hardening.

This model departs from prior formulations based |

on state variable theory since isotropic and kine-
matic hardening are directly associated with the
transient component of deformation. For small
strains and rotations, this allows an additive de-
composition of the creep strain into a steady-state
{(viscous) component and a transient component.
Consequently, a direct link can be established be-
tween the type(s) of hardening and the reversibil-
ity of the strains. For example, when both types of
hardening or just kinematic hardening are present,
the steady-state component is ‘“‘irrecoverable”.
However, the transient strain is “recoverable” on
unloading since equilibrium requires the internal
elastic back-stress to reduce to zero. These time-de-
pendent elastic strains represent delayed clasticity
or anelasticity. On the other hand, if only isotropic
hardening is present, both strain components are
*irrecoverable”.

The proposed formulation can be expressed in
terms of certain dimensionless variables, identified
by Ashby and Duval (1985), that are required to
construct master-curves, respectively for the creep
and constant strain-rate response of polycrystalline
ice. The differential mode! follows creep data on ice,
specifically the comprehensive uniaxial experimen-
tal data of Jacka (1984) for dense isotropic poly-
crystals, and of Sinha (1978) for transversely-
isotropic columnar-grained ($-2) ice. Predictions of
the ratio of transient (delayed elastic) strain to to-
tal strain agree qualitatively with Sinha's (1979)
model if grain-size effects are taken into account.

Correspondence between constani-stress creep and
constant strain-rate tests, as obscrved in uniaxial
compression tests at —5°C on fine-grained iso-
tropic ice by Mellor and Cole (1982, 1983), isdem-
onstrated for deformation involving pure flow.

In general, numerical integration is necessary to
solve the governing differential cquations for the
constitutive model since both isotropic and kine-
matic hardening are history-dependent phenom-
ena. However, in the present formulation, it is
possible to derive closed-form analytical solutions
for the creep-compliance function and the recovery
response when only kinematic hardening is present,

2. FORMULATION. OF DIFFERENTIAL
MODEL ‘

Physical basis of deformation model

There is general agreement, based on theoretical
and experimental work, that at least two thermally
activated deformation systems, a soft system and a
hard system, are present during the flow of fresh-
water polycrystalline ice (Sinha, 1979; Ashby and
Duval, 1985). They may be: (a) grain boundary
sliding (with diffusional accommodation) and basal
slip, or (b) basal slip and slip on a non-basal plane.
A combination of these processes could be present
as well.

Initially, the solid resists the applied stresses in
an elastic manner and then flow begins on the soft
and hard systems, However, flow, particularly on the
easy soft system, causes the build-up of internal
elastic stresses. This may occur as a result of grain
boundary sliding next to grains poorly aligned for
deformation or dislocation pile-ups at the bounda-
ries of such grains. Dislocation pile-ups at grain
boundaries have been observed in ice through scan-
ning electron microscopy (Sinha, 1987). The inter-
nal elastic stresses, termed back- or rest-stresses,
resist flow. In addition, internal drag-stresses which
resist dislocation fluxes are gencrated in annealed
materials undergoing flow. The increase in drag-
stresses is the outcome of: (i) creep resistant sub-
structures, i.c., sub-grains and cclls, formed by grain
boundary sliding or dislocation movement, and (ii)
dislocation entanglement, dipole formation and



kink band formation during slip (particularly on the
basal plane).

A detailed understanding of evolving structural
and stress states on the deformation of polycrystal-
line materials is unavailable at the present time. For
example, only recently has an attempt been made
to model the primary creep process resulting from
sub-cell formation using sub-cell size and misorien-
tation as state variables (Derby and Ashby, 1987).
However, it is well-known than an increasing drag-
stress contribut:s to isotropic hardening, while an
increasing rest-stress contributes to kinematic hard-
ening. Both types of hardening are macro-scale
manifestations ¢ f physical mechanisms occurring on
the micro-scale, and are exhibited by metals (Hart,
1976), concretes (Chen, 1982), and ice (Le Gac
and Duval, 1980).

Classical thecries of incremental visco-plasticity
generally employ the concepts of an initial yield
surface and subsequent loading surfaces in consti-
tutive formulations. The loading function depends

on the state of stress and strain as well as the history |

of loading, and is described by a hardening rule,
generally of three types: isotropic, kinematic and
mixed hardening. In isotropic hardening (Hill,
1950), the loading surface expands uniformly with-
out distortion during flow, as shown schematically
in Fig. la. The magnitude of expansion is indepe-
dent of the direction of straining. The drag-stress,
therefore, may be expressed as a scalar variable. In
kinematic hardening (Prager, 1955), the loading
surface translates as a rigid-body in stress space
while maintaining its original size, shape and ori-
entation (see Fig. 1b). This type of hardening in-
duces directionally dependent material properties,
referred 1o as deformation-induced anisotropy. The
Bauschinger effect in metals is an example of kine-
matic hardening. Because of the directionality of
translation in a nine-dimensional stress space, the
back-stress is a second-rank tensor quantity. A com-
bination of kinematic and isotropic hardening
(Hodge, 1957) leads to the more general mixed-
hardening rule in which the loading surface experi-
ences both translation and uniform expansion.

Mathematical formulation

The model development considers the present
state of the material to be dependent only on cur-
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Fig. 1. (a) Isotropic and (b) kinematic hardening in classical
theory of visco-plasticity.

rent values of the state variables, which include ob-
servable variables (such as total strain and
temperature) and a set of internal variables. It fol-
lows that the effects of past history are accounted
for by the state variables. The constitutive relations
seek to relate the strain-rate to the state variables.
Considering only small strains and small rotations,
the total strain-rate is additively decomposed, i.e.:

E=¢+E+E n

where the three terms on the right-hand-side repre-
sent instantaneous elasticity, transient flow, and
steady-state or viscous flow, respectively. The elas-
tic strain-rate is related to the stress-rate by a hy-
poelastic constitutive law of grade zero, i.e., the
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material-response moduli are constants ( Truesdeli,
1955).. The nonelastic or creep strain-rate, i.e., the
sum of transient and viscous strain-rates, in general
may be expressed as:

b=t (0, Toa,) (2)

where o and T are state variables representing the
Cauchy stress and the absolute temperature, respec-
tively, and «,, 1s a list of »n internal variables char-
acterizing the flow resistance offered by the internal
microstructural state of the material. In the pro-
posed model, the internal variables are the scalar
drag-stress and the back-stress tensor, The three
component strain-rates are further described in what
follows.

The instantaneous elastic strain. ¢, is related to
the stress, o, through the Young's modulus, E, and
the stress-temperature modulus, S, of polycrystal-
line ice. This relationship may be expressed in rate
form as:

¢t.=G/E+ BT /E (3)

where E=E(T) and B=B(T). Under isothermal
conditions the last term in eqn. (3) is zero.

The viscous strain, €,, which is associated with
**secondary” creep or steady flow conditions, fol-
lows the well-known Norton-type power-law of Glen
(1955),i.e.,

(&/&)=(a/ V)" (4)

where N is the power-law index, ¢, is a reference
strain-rate (may be set equal to unity without loss
of generality), and I is a temperature-dependent
factor representing the stress corresponding to the
reference strain-rate. Equation (4) assumes that the
viscous strain-rate depends only on stress and tem-
perature. The power-law formulation is generally
considered to be adequate for the stress and tem-
perature ranges (i.e., 0.2 to 2 MPaand —10°C to
—50°C, respectively) encountered in most ice en-
gineering problems. At higher stresses and rates of
loading where microcracking may be dominant
during deformation, the power-law can be used in
conjunction with damage mechanics (Wu and
Shyam Sunder, in prep.) to describe ice behavior,
The validity of the power-law with a constant value
of N greater than one has been questioned at very
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low stresses and strain-rates (Mcllor, 1980, Hallam
and Sanderson, 1987). .

The temperature dependence of the stress-factor
V is characterized by an Arrhenius activation en-
ergy law, i.e.:

V=V, exp(Q/NRT) (5)

where T is the temperature in Kelvin, V, is a tem-
perature-independent constant, Q is the activation
energy, and R is the universal gas constant equal to
8.31 J mol='K~'. The Arrhenius equation is gen-
erally considered to be invalid a* temperatures close
to the freezing point (e.g. above —10°C) in poly-
crystalline ice due to the increase in Q with temper-
ature (Barnes et al., 1971, Gold, 1983). Mellor
(1980) has suggested the use of eqn. (5) with an
apparent value of Q taken from experimental data,
or some empirical law of the form V=V, exp(k0/
N), where k is a constant and 8 is the number of
degrees departure from a 0°C datum.

Noting eqn. (2), the transi:znt strain-rate ¢, is
taken to follow a Norton-type power-law driven by
a reduced-stress measure, a., i.¢.,

N
(t/i=(0/1)"=(%E) L ®
where the intcrnal variables R ind B represent the
back-stress and the non-dimensional drag stress, re-
spectively. Implicit in the formulation of eqn. (6)
are the assumptions that: (i) the exponent N is the
same as that for steady flow in eqn. (4), and (ii)
the temperature dependence of the transient defor-
mation-rate, represented by the parameter V, is
given by an Arrhenius law with an activation energy
equal to that for steady flow.

The former assumption considers the underlying
flow law to be the same for both deformation-rate
mechanisms, the only difference being the exis-
tence of the drag- and back-stresscs in the case of
transient flow. However, different values of ¥ may
be appropriate for the transient and viscous flow
laws if they are strongly supported by experimental
data, which currently are not available. For colum-
nar-grained polycrystalline (fresh-water) ice this
assumption can also be inferred from the numerical
values for paraimeters in Sinha’s (1978 ) time-hard-
ening model, and for dense isotropic polycrystals
from the kinematic hardening model of Ashby and



Duval (1985). In celation to the second assump-
tion, Sinha (1978) has shown that the activation
energy for transient flow (equal to 67 kJ mol—')
agrees with Gold's {1973) data for steady flow (65
kJ mol~!) in the same type of ice for temperatures
ranging between —5°C and —40°C.

Evolution equations must be specified for R and
B, which are the history-dependent internal vari-
ables representing transient flow. The rate of change
of these variables, like the creep strain-rate in eqn.
(2), is also a function of the stable variables (o,
T,x,). In classical formulations, the evolution
equations follow Bailey-Orowan type of expres-
sions (Orowan, 1946; Chaboche and Rousselier,
1983), i.e.:

R=h i,—f,(RT)=R(a,R, B, T) (7)

B=hyéu—f(BT)=B(o, R, B, T) (8)

where (h,, h,) are strain-hardening functions, and
(/,/2) are static recovery-rate functions. At steady
state, the evolution-rates decay to zero. Typically
(hy,h,) are taken as constants for static thermal re-
covery, but they may be functions of the state vari-
ables if dynamic recovery (Kocks, 1976) is
modeled. Various forms of eqns. (7) and (8) have
been used by Miller (1976), Hart (1976) and An-
and (1982, 1985) for metals, and by Le Gac and
Duval (1980) for polycrystalline ice. The appropri-
ateness of such expressions can only be measured
by the success with which the predicted creep or
stress—-strain responses compare with available ex-
perimental data, since by definition internal vari-
ables cannot be observed or directly measured.

In the proposed nodel, the creep strain is decom-
posed into a transiznt (generally recoverable) and
a viscous (irrecoverable) component. The stress
appears in the evolution ecjuations only through the
reduced stress or the stress-difference, i.e. (6—-R),
asin egn. (6). In a manner similar to the formula-
tion of eqns. (7) and (8), the rates of change of R
and B are postulated to be linearly proportional to
the transient strain-rate, i.e.:

R=AE¢ (9)
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B=HE¢, (10)

Note that recovery is implicit in the expression for
transient strain-rate. Steady state is reached when
the transient strain-rate vanishes and the evolution
rates decay to zero. The initial value of R is zero for
an annealed material or for a material that has re-

.covered from prior loading. On the other hand, the
" initial value of B, i.e. B,, may represent the an-

nealed state of the material or some level of initial
hardening introduced by pre-straining. The param-
eter A is a temperature-independent and dimen-
sionless constant, while H is a temperature-
independent factor with units of reciprocal stress.

Under creep loading, R increases asymptotically
to a value equal to the applied stress, at which point
transient flow ccases. In the case of constant strain-
rate loading, R approaches the steady-state stress
asymptotically. The maximum value of transient
strain in both these cases is given by €, .. =0/4E.
For the same loading conditions, the drag-stress
reaches some maximum value, implying that the
isotropic resistance 1o transient flow is not
unbounded.

Under reversed or cyclic loading, R alternates be-
tween positive and negative values, i.e., the physi-
cal processes associated with kinematic hardening
rclax tocally, thus limiting the magnitude of hard-
cning in the matcrial. The drag-stress increases dur-
ing uniaxial loading (where loading is defined as an
increase in the magnitude of the transient strain).
If unloading occurs, i.e., the magnitude of the tran-
sient strain decreases, the sign of eqn. (10) is re-
versed and the drag-stress decreases. The decrease
in drag-stress during unloading indicates a decreas-
ing resistance to grain boundary sliding and dislo-
cation fluxes. This may arise from a spatial bias in
the distribution of defects generated by isotropic
hardening which favors regions of high back-stress
concentration. :

In the orthotropic generalization of the proposed
model, the instantaneous elastic deformation may
be described by the classical theory of elasticity (see,
for example, Lekhnitskii, 1963). Rabotnov (1969)
and Betten {(1981) have shown that three-dimen-
sional constitutive relations for creep can be de-
rived by expressing the creep-rate as an isotropic
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function of the stresses, or from the assumption of
the existence of a creep potential.

If the latter approach is adopted, the viscous de-
formation-rate may be derived by applying the nor-
mality principle to a scalar-valued flow potential
expressed in terms of an equivalent-stress measure
for incompressible orthotropic materials. The
equivalent-stress is similar in form to that of Hill
(1950) for plastic yield in metals and Hart (1976)
for the nonelastic deformation of metals at elevated
temperatures, The transient deformation-rate may
be derived similarly, i.e., by applying normality to
a flow potential expressed in terms of the equiva-
lent reduced-stress measure and assuming incom-
pressibility of transient flow which, though not
strictly true, is a reasonable assumption according
to Sinha (1987).

This approach eliminates the need for an integral
formulation under variable loading histories or
multiaxial loading and for generalizing the super-
position assumption for nonlinearly viscoelastic
materials. The orthotropic formulation derived on
the basis of the foregoing arguments is presented by
Shyam Sunder and Wu (in prep.).

Model formulation in dimensionless variables

For the special cases of constant-stress and con-
stant strain-rate loading, Ashby and Duval (1985)
have suggested that unique relationships exist be-
tween certain dimensionless variables. Such rela-
tionships are predicted by the proposed model as
shown below,

For creep of polycrystalline ice at constant ap-
plied stress, Ashby and Duval (1985) have consid-
ered the following dimensionless variables for strain,
strain-rate, time, and the back-stress:

t=¢E/a (1)
E=¢/t, (12)
I=té,Elo (13)
R=R/o (14)

Substitutingeqns. (11)-(14) ineqns. (3), (4) and
(6) yields:

=1 - (15)

t=1 : (16)
and

& =1 (17)
R+BéN=1 ‘ (18)

The dimensionless evolution equations can then be
expressed as:

R=AZ, (19)
dB -~ ¢
a="1-R (20)

where H=H/(o—R) in eqn. (10). This formula-
tion for H satisfies the dimensional requirements
imposed by experimental data on the creep of po-
lycrystalline ice. It is also consistent with the for-
mulation for the evolution-rates of the internal
variables, which like the transient strain-rate, de-
pend on the stress-difference (¢—R). In the above
equations, the differcntiation is with respect to di-
mensionless time. Equations (15)-(20) show that

the model predicts a unique relationship between

the dimensionless variables and is independent of
applied stress level and temperature.

Under constant strain-rate loading, the model
predicts that a unique relationship exists between
dimensionless stress & and dimensionless time 7, in-
dependent of the applied stiain-rate ¢, and temper-
ature. Consider the following dimensionless
variables for stresses, time, ond strains, as suggested
by Ashby and Duval (1985

. o0 5 R

a—amm’ R—Umm (2] )

=l g o8 B _¢E (22)
g ag ag g

- E .

=6mi“—.60' ) (23)

where €=1¢, and o,;, is the stress corresponding to
the applied strain-rate given by Glen’s power-law,
ie., v

omin——'V(éa/éo)”N (24)

Substitutingeqns. (21)-(23) inegns. (3), (4), (6),
(9) and (10) yields:



a‘?—r[azcha (25)
d%[am:aN (26)
d%[az.l=[%'§]~ @7
R=A aq[.{aal (28)
‘;—‘?:.&—_}%g}{az,] (29)

where & indicates d#/d7, and similarly for R. Ex-
plicit expressions for the dimensionless elastic,
transient, and viscous strain-rates can be obtained
by carrying out the differentiation in eqns. (25)-
(27). Upon substituting eqns. (25)-(27) in eqn.
(1) expressed in dimensionless form, the following
equation is obtained:

L N
=1— [a“‘+(%) ] (30)

Equations (27)~(30) can be integrated with the
initial conditions of zero dimensionless stress and
transient strain. As steady-state is reached (i.e., the
dimensionless stress-rate, transient strain-rate, and
rates of hardening decay to zero), the dimension-
less stress and transient strain tend tooné and 1/.4,
respectively. The stress at steady-state therefore at-
tains the value of o,,,;, given by eqn. (24). A single
master-curve can be used to relate the dimension-
less stress and time since the temperature-depen-
dent factor I"and the applied strain-rate have been
eliminated from the equations. Comprehensive ex-
perimental dati is currently lacking to verify the di-
mensionless relationships for deformation involving
pure flow (no damage due to microcracking or mi-
crostructural changes associated with recrystalliza-
tion) under constant strain-rate loading.

3. SOLUTION OF GOVERNING MODEL
EQUATIONS

The nonlinear governing differential equations for
the uniaxial model are defined in eqns. (1), (3),
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(4), (6), (9) and (10). For constant-stress creep
loading, the solutions of eqns. (1), (3) and (4) are
trivial. However, eqns. (6), (9) and (10) are cou-
pled and numerical integration is necessary to com-
pute the transient strains if both isotropic and
kinematic hardening are present. If isotropic hard-
ening is absent, i.e., B is a constant, analytical solu-
tions can be obtained for the nonlinear (N> 1)
differential equations. For a general or variable
loading history, the governing equations are all cou-
pled and numerical integration is required.

Closed-form analytical solutions for creep
and recovery response

The closed-form analytical solutions for the creep
and recovery response when isotropic hardening is
absent are derived below. These solutions provide
valuable insights regarding the behavior of the
modecl.
~ Inan ideal creep test, the stress, g, is applied in-
stantaneously and the stress-rate history is a Dirac
delta function, 6(¢), with amplitude ¢. This history
is zero for all ¢ except at =0 where it is infinity such
that: :

-

J. ocd(t)=0 (31)
for 1*> 0 and zero dtherwise. Consequently, the ini-
tial strain-rate predicted by the model is also a Dirac
delta function, i.e., it is equal to infinity. The am-
plitude of this function is a/E, which corresponds
to the instantaneous elastic strain. For time incre-
mentally greater than zero, the strain-rate is finite
and cquals:

£t =(a/BV)YV+(a/V)¥ (32)

Equation (32) recognizes that the elastic back-stress
is equal to zero initially. If the first term of the equa-
tion, representing transient flow, dominates the ini-
tial creep response, the constant B will be less than
one.

The dimensionless creep-compliance function for
the model, J, is the sum of the dimensionless elas-
tic, transient and viscous strains, respectively, i.e.,

J=E.+E+E, (33).

The dimensionless elastic and viscous strains are



52

given in eqns. (15) and (16). The dimensionless
transient strain can be analytically derived from
eqns. (18) and (19) with a substitution of vari-
ables approach. In particular, define a variablc ¢ as
follows:

Then,
g=—A¢ (35)

Substitution of egns. (34) and (35) intoeqn. (18)
and a separation of variables yields:

dg -4, - .
J=5+ e (36)

Integrating eqn. (36), applying the initial condi-
tion of §,=0, i.e., g=1, and substituting for g results
in:

= /A= [AV-' 4 AV [BN(N= 1)) - (37)

Equation (33) together with eqns. (15), (16) and
(37) provide a closed-form analytical solution_for
the dimensionless creep-compliance function. Also,
by substituting eqn. (37) in eqn. (18), the dimen-
sionless transient strain-rate can be expressed in
terms of dimensionless time as:

&=[BY '+ A/B(N-1)[|¥-™ (38)

Equations (37) and (38) show that the dimension-
less transient strain and strain-rate tend to 1 /4 and
1/B" as dimensionless time tends to infinity and
zero, respectively.

If creep recovery is allowed to occur at time £=1,,,
the elastic component of the strain is recovered in-
stantaneously while the viscous component is irre-
coverable and remains unchanged with time,
However, the transient strain will decay with time
according to the following closed-form analytical
solution that can be derived from egns. (18) and
(19) in a manner similar toeqn. (37):

t=[E Y+ (4/B)V(N=1) (;'_t“'l)ll/u -N)
(39)

where &, is the dimensionless transient strain at the
time of unloading. Equation (39) shows that the di-
mensionless transient strain decays to zero with di-
mensionless time after unloading.

Numerical solutions for creep, constant
strain-rate and arbitrary loading histories

In many cngincering applications involving tran-
sient and viscous flow, the entire loading history has
to be traced and this leads to an initial-value prob-
lem posed by the evolution equations for the inter-
nal variables and the equations for the nonelastic
strain-rates., These equations are coupled, highly
nonlinear, and could be mathematically stiff in cer-
tain applications (Cordts and Kollmann, 1986).

The governing equations of the uniaxial model are
regarded as a coupled system of first-order ordinary
differential equations. If ¢, and R, B represent the
nonelastic strain-rate and internal variables, re-
spectively, then in general the initial value problem
can be expressed as follows:

R=AE¢=R(a, T, R B) (40)
B=1E/(6-R) &=B(c, T, R, B) (41)
G=E(i~&,)=6(0, T, R, B) (42a)
or

¢=d/E+é,=¢(0, T, R, B) (42b)
where

¢e=(0/V)¥+(0,/V)¥=¢,(0, T, R, B) (43)

For isothermal strain-controlled tests, the unkowns
are R, B and ¢. The histories of these unkowns can
be obtained by simultaneously integrating eqns,
(40), (41) and (42a). For isothermal stress-con-
trolled tests, the two unkowns R and B can be ob-
tained by simultaneously integrating eqns. (40) and
(41). The strain-history can then be computed from
egns. (42b) and (43).

For the uniaxial equations considcred in this pa-
per, the Runge-Kutta-Verner fifth and sixth order
numerical integration algorithm is satisfactory and
no numerical instability is encountered. A variable
time-step may be used for gencrating the dimen-
sionless creep response since thz transient strain-
rate, which is initially very high and requires small
time-steps for accuracy of integration, decays with
time and requires larger time-steps for computa-
tional efficiency. Specifically, the following time-
steps are used for generating Figs.. 2-11:



Figs. 2-6 variable time-step, but with a
constant ratio of 1.38 between the
current and previous time-
increments;

Fig. 7 constant time-step of 5 s;

-Fig. 8 constant time-step of 70 s;

Fig. 9 constant time-step (dimension-
less) of 0.05;

Figs. 10 and: for constant strain-rate tests, a

11 constant time-step of 10 s; for

creep tests, variable time-step
with a constant ratio of 1.20 be-
tween the current and previous
time-increments.

4. MODEL PREDICTIONS AND
EXPERIMENTAL VALIDATION

Parameter identification and estimation

The uniaxial model contains a total of six param-
eters: E, N, V,, A, H and B,. For single ice crystals
and transversely-isotropic ice, five independent
constants are rneeded to describe elastic behavior.
Values for these elastic moduli are available for sin-
gle crystals (Cireen and Mackinnon, 1956). The
value of E for polycrystalline isotropic ice can be
estimated from the elastic moduli of single crystals
(Gammon et al,, 1983). Several investigators (sce,
e.g., Gold, 1977) have independently shown using
high-frequency sonic methods that the Young’s
modulus of polycrystalline fresh-water ice varies in
the range of 9-11 GPa, with negligible temperature
dependence between —~5°Cand —45°C,

Based on test data corresponding to — 10°C and
a stress-range of 0.2 to 2 MPa, Ashby and Duval
{1985) have estimated the value of N to be three
for the creep of isotropic polycrystals. The use of
N =3 for isotropic polycrystalline ice at moderate
stresses is supported by theoretical models which
assume dislocation mobility as the rate-controlling
process ( Baker, 1982). Sinha (1978) has also found
the same value for the stress-exponent from experi-
mental observations.

The temperature-independent constant V,and the
activation energy Q can be estimated from creep
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data for various temperatures. From the values of
the paramcters used in Sinha’s equation (1978,
1979), V, is estimated to be 6.59 kPa for Q=67 kJ
mol~*.

Under constant-stress loading, the parameters A4
and B, determine the maximum value of the tran-
sient strain (g/AE) and the initial transient strain-
rate (o/B,V)", respectively. The constant A4 can be
estimated by subtracting the elastic strain and the
viscous strain from the total strain when steady-state
is reached. Since the total recoverable deformation
is o/ E+0/AE, the fully-relaxed elastic modulus,
equal to the applied stress per unit maximum re-
coverable deformation, is given by EA/ (1 +A). This
allows A to be computed from a creep-recovery test
as well. The constant B, can be estimated from egn.
(32). This requires knowledge of the initial strain-
rate and the constant V. The latter can be computed
from eqn. (5), but initial strain-rates computed
from expcrimentally-observed initial strains may be
somewhat inaccurate dué to measurement limita-
tions and ambiguities in the physical interpretation
of the data at small strains (see, for example, Jacka,
1984; Mellor and Cole, 1982). '

The parameter /7 controls the amount of iso-
tropic hardcening at a given time. Being associated
with the internal variable B, it can only be esti-
mated from the entire transient strain and strain-
rate histories. Having determined V, the viscous
strain and strain-rate histories are known, and the
transient strains and strain-rates can then be ob-
tained from the creep data. Integratingeqns. (9) and
(10) and substituting the results in eqn. (6), yiclds
the following expression:

h‘l{ [ (U—AEQ)/( Véll'/l\') ]N+I _B°N+|}
=In{HE(N+1)/V"}
+ln{J-' (—AEe)"-'dr) (44)

The quantity on the left-hand-side plotted against
the second term on the right-hand-side of eqn. (44)
ideally is a straight line, and A can be computed
from its intercept with the y-axis.

Comparison of the model predictions with exper-
imental data in this paper is based on the following
values for N, E, V, and Q:

N=3
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E=9.50GPa
V,=6.59 kPa
Q=67.0kJ mol~'

Comparison of model! predictions with
Jacka’'s creep data

Jacka (1984) has published results of uniaxial
compression tests on isotropic polycrystalline ice
with a mean grain size of 1.7+0.2 mm. The sam-
ples were tested under constant stress ranging from
0.1 to 1.5 MPa at the following specific tempera-
tures: —5.0, —10.6, —17.8 and —32.5°C. Figures
2, 3 and 4 show plots for Jacka’s data (taken from
Ashby and Duval, 1985) corresponding to & versus
1, & versus 7, and & versus , respectively. The pre-
dictions of the model are indicated by solid lines
with 4=0.0142, B,=0.286 and H=0.02. Also
shown are the model predictions for no isotropic
hardening using the solutions given in eqns. ( 15)~

ot !

(17) and eqns. (37) and (38). Parameters used for
generating these curves are 4 =0.033 and B=0.402.
Note that for experimental data plotted in dimen-
sionless form, the model predictions are indepen-
dent of E, ¥, and Q. The predictions of Sinha’s
(1978) equation as modified by Ashby and Duval
(1985) are also shown in the figures.

The solid lines show that model predictions agree
with the data when strain-rate is plotted against time
or strain (Figs. 2 and 3). The pradicted master-
curve in the strain versus time plot ( Fig. 4) also fol-
lows the data, but at small times the predicted strains
somewhat overestimate the experim=ntal data. With
no isotropic hardening, the initial strain-rates are
underestimated while the initial strains agree with
the data. While the values of the parameters are un-
changed for the proposed model in all three figures,
the value of the parameter which equals the maxi-
mum transient strain for the modified equation
(parameter 4 in Ashby and Duval's paper) is re-
duced by a factor of two in Figs. 3 and 4.

2 100

a. Moditied Sinha
b. Proposed Modet
¢. No Isotropic Hardening

204

Log, le/¢€. )

DATA OF JACKA {1984)

e
3

TERTIARY CREEP A

&
CJ \.
% ¢
A P :
\ .\‘ . ¢ ::1
=~ L]
ok \.; 0’“0‘ 1‘
) MINIMUM CREEP RATE
i 3 1 1 i 'l
-1.0 -0 0 05 10 K3 20 25
1€ pmnk
Log,(*g=2)

Fig. 2. Dimensionless strain-rate plotted against dimensionless time, from the data of Jacka (1984); (figure, excluding model

predictions, reproduced from Ashby and Duval, 1985).
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Fig. 3. Dimensionless strain-rate plotted against dimensionless strain, from the data of Jacka (1984); (figure, excluding model

predictions, reproduced from Ashby and Duval, 1985).

Comparison of model predictions with
Sinha’s creep data

Sinha (1978) has conducted tests on the creep re-
sponse of transversely-isotropic columnar-grained
ice (S-2 ice) with an average grain diameter of 3
mm. The tests were conducted in the temperature
range of —9.9 to —41°C under a uniaxial compres-
sive load of 0.49 MPa acting in the plane of trans-
verse-isotropy. Figure 5 shows the creep strains
obtained at various temperatures shifted to a refer-
ence temperature of — 10°C using the shift-func-
tion derived from the Arrhenius law by Sinha
(1978). The solid line indicates the model predic-
tion with 4=0.33, B,=0.0865 and H=0.454. The
value of 4 is identical to that obtained by Sinha
(1978). The experimental data and theoretical re-
sults are in agreement. Notice also that the values
of A, H and B, used for Sinha’s and Jacka’s data are
different, reflecting differences in the ice types that
were tested, i.e., isotropic and granular versus
transversely-isotropic and columnar-grained, as well
as the average diameters of ice grains. Such modi-

fications 1o parameter values are also needed for
Sinha’s equation. For example, the parameter cor-
responding to 4 was determined to be 1/3 from
Sinha’s data, but- according to Ashby and Duval
~«(1985) values of /70 and 1/35 are suitable for
Jacka’s data.

Model prediction of ratio of transient to total
strain

The parameter AE can be interpreted as an ane-
lastic modulus (not to be confused with relaxed
modulus), while BV represents the isotropic resis-
tance to transient flow. If transient deformation is
related to grain-size as postulated by Sinha (1979),
then the parameters A and H will depend on grain-
size. Sinha’s (1979) model considers both transient
strain and strain-rate to be inversely proportional
to grain-size. For consistency with this formulation
in making comparisons, it is necessary for the model
parameters to be related to the grain-size d as
follows:

A=d/A’ (435)
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B,=B,'d"/®
ﬁ=H: d(N+l)/N

(46)
(47)

where 4’, B," and &' are grain-size independent
material parameters. The values of these latter pa-
rameters are calculated from eqns. (45)-(47) re-
spectively. For the previously determined values of
A, B, and H (viz., 0.33, 0.0865 and 0.454) A’ =9
mm, B,=0.06 mm-"", and A =0.105
mm - (N+1 )/N.

The analytical solutions for the case of no iso-
tropic hardening are useful in inferring some of the
characteristics of the complete model. Equations
(17) and (38) show that the ratio of the (dimen-
sionless) transient strain-rate to the viscous strain-
rate decreases with increase in grain-size. The ratio
also decreases with dimensionless time. According
1o the definitions of dimensionless time (eqn. (13))
and viscous strain-rate (eqn. (4)), the ratio must
also decrease with increase in applied stress. These
trends are in agreement with predictions of Sinha’s
equation. v

The predictions of the proposed model and Sin-
ha’s equation with regard to the relative contribu-
tion of transient strain to total strain are compared



below. Let the ratio of the transient strain to the to-
tal strain, y, be defined as follows:

S (48)

By solving eqns. (18)-(20), the strain dependence
of y under a constant stress load of IMPa at — 10°C
for varying grain-size is predicted as shown in Fig.
6. The important features predicted by Sinha’s
equation such as the increasing value of y with de-
creasing d, the occurrence of maximum y at small
strains, the gradual shift of the maxima towards
larger strains with decreasing d, the gradual de-
crease in y with increase in strain after the peak is
passed, and the decreasing effect of 4 on y at large
strains are all observed in the figure. The actual nu-
merical values in the figure are different from those
of Sinha (1979), except at the grain-size of 3 mm
which corresponds to the test data from which the
model parameters are determined. Furthermore,
since the relationship between the dimensionicss
transient strain and time is independent of temper-
ature (eqn. (37}), it can be deduced from eqn. (48)
that the evolution of y with dimensionless strain for
a given grain-size is unique, i.e., independent of both
temperature and stress level.

100 T T

1 T T T T T T

Gramn Size: 0 2mm

Totat Strain. 10

Fig. 6. Strai 1 dependence of ratio of transient strain to total
strain for various grain sizes; o=1.0 MPa at — lO°C._
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Prediction of model response under mono-
tonically increasing stress

The rate-sensitivity of the compressive strength
of columnar-grained ice under constant cross-head
displacement rates has been investigated by Sinha
(1981). He conducted tests at —10°C on ice with
an average grain-size of 4.5 mm and under a con-
stant cross-head displacement rate of 1.25% 10-3
cm/s. The results were found to be represcntative
ol the constant stress-rate rather than the constant
strain-rate condition.

Using the actual stress-time history shown in the
upper curve of Fig. 7b (not the constant stress-rate
idealization) as input, the strain—-time response of
the proposed model is predicted and superimposed
on the test data as shown in the lower curve. The
values of the hardening parameters are determined
from equs. (45)~(47) for the given grain-size and
previously determined values of the grain-size in-
dependent parameters. Figure 7a shows the pre-
dicted stress versus strain response superimposed on
the test data. These figures show that the predic-
tions of the proposed mode! under monotonically
increasing stress agree with experimental observa-
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Fig. 7. (a) Stress-strain results and (b) stress and strain his-
tory for columnar-grained ice of average grain diameter of 4.5
mm at - 10°C and nominal strain-rate of 5% 10~% 5~ (data
from Sinha, 1983).
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tions. Note that parameter values, which were de-
termined from a different data set, are kept
unchanged.

Comparison of model predictions with the
creep and recovery data of Brill and Camp

Figure 8 shows creep and recovery data for tests
conducted on randomly oriented snow-ice by Brill
and Camp (reproduced in Sinha, 1979). The three
sets of data refer to tests carried out under the fol-
lowing conditions: curve (a) at —5°C and 0.232
MPa, curve (b) at —5°Cand 0.125 MPa, and curve
(c) at —10°C and 0.238 MPa. The model predic-
tions, shown in solid lines, are generated with
A'=6.5 mm, B,’=0.13 mm~"" and ' =0.001
mm ™ ™* /N The grain-sizes used for curves (a),
(b)and (c)are 2.3 mm, 2 mm, and 1.5 mm respec-
tively, which are almost identical to the values de-
termined by Sinha (1979). Differences in the
hardening parameters reflect the difference in ice
types, i.e., transversely-isotropic and columnar-
grained versus isotropic and granular snow-ice_The
agreement between the modg! predictions and test
data is acceptable, given that the mcasurcment of
strain recovery in ice shows large scatter (Sinha,
1982).

A major difference exists between Sinha’s recov-
ery model and the present formulation. The former
can result in a decrease of the permanent/irrecov-
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Fig. 8. Comparison between the predicted and expcrimental
creep and recovery of snow-ice. Experimental data of Brill
and Camp reproduced from Sinha (1979). The zcro time of
curve (c) is shifted for clarity.

erable viscous strain and eventually lead to re-
versed strain (e.g., an elongation or tensile strain
due to recovery from compressive creep). This is
due to the particular form of the superposition prin-
ciple adopted, in which the elastic and the transient
strains resulting from the sudden reduction in stress
are subtracted from the total strain at unloading.
Recovery is thus the mirror image of the transient
term in the equation for loading and as time in-
creases it can exceed the transient creep strain at
the instant of unloading. The proposed formulation
does not suffer from this modeling limitation.

Constant strain-rate tests

The dimensionless stress—time curves of the
model, shown in Fig. 9a, are generated with eqns.
(27)-(30). Using the relationship between dimen-
sionless time and strain given in eqn. (23), the
stress—strain curves (Fig. 9b) follow immediately,
Note that the dimensionless stress-strain curves
start from a dimensionless strain of unity since the
limiting ratio of the total to the elastic strain at zero
time (last equation of eqns. (22)) equals one. Pa-
rameter values are identical to those used for the
creep data of: (a) Jacka with a grain size of 1.7 mm,
(b) Sinha with a grain size of 3 mm, and (c) Brill
and Camp with a grain size of 2.3 mm. The pro-
posed model considers deformation involving only
pure flow, i.e. no damage or recrystallization. Thus,
correspondence as noted by Mellor and Cole ( 1982)
can be established between constant-stress creep and
constant strain-rate responses under these condi-
tions as shown below.

First, all the curves in Fig. 9a have an initial slope
of one, which corresponds to a unit-intercept on the
strain axis of dimensionless strain--time creep curves
(see Fig. 5). Thus, correspondence for Young's
modulus is established.

A second point of correspondence is that the
strength for a given strain-rate can be determined
directly from a constant strain-rate test, or from a
creep test in which the minimum strain-rate equals
the applied strain-rate. Figure 9 shows that the di-
mensionless strength (maximurn or steady-state
flow stress in this model) is one, i.e. the strength



13 Y T T
Siwer Law
101
7 , Brint 8
] P
5 ost Nm;/_
4
o
€
8
A
c
@
€
Q
1.2 T v T T T T T
10 Power Law
N
<
- gritt &
@w 08 Camp 1
A
:
£ os ;
]
a
$ 04 .
3 /
o L Jacka
02 R
0 . N " " i N N
1 2 3 4 5

Dimensionless  Stramn

Fig. 9. (a) Dimensionless stress~time and (b) dimensionless
stress—strain curves gencrated with parameters determined
from the creep tests of Sinha (1978), Jacka (1984), and Bril
and Camp (Sinha, 1979). The elastic, power~law prediction
is included for comparison.

equals a,,;,, corresponding to an applied strain-rate
&,. On a dimensionless strain-rate versus time creep
curve (Fig. 2), the stress corresponding to ¢=
Emin=£,, 1.8., €= 1, IS Opia DY eqns. (4) and (24).
Hence the strength is, in principle, measurable from
both types of test. From this it can be inferred that
the variation of strength with strain-rate can also be
investigated by either test.

The converse problem of estimating the mini-
mum creep-rate for a given stress is likewise ame-
nable to direct measurement as well as an indirect
approach involving stress—strain curves. By sclect-
ing the stress—itrain curve on which the strength
equals the appiied stress of the creep test, the re-
quired minimum strain-rate is found, again by vir-
tue of the correspondence of eqns. (4) and (24).
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In a broader view, since a consistent set of differ-
ential equations govern both creep and constant
strain-rate solutions, there is complete correspond-
ence between theoretical creep and stress-strain
curves. This is confirmed by Fig. 10, which shows
the construction of a stress-strain curve for the
strain-rate of 10~%s~" from a family of creep curves,
and by Fig. 11, which shows the construction of a
creep curve for the stress of 1 MPa from a family of
stress—strain curves. All curves in these two figures
are generated with the model parameters derived

from Sinha’s (1978) data. In Fig. 10a, a horizontal

straight line at the level of 10~% ' is drawn across
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the creep curves. Stress and strain values, read off
at the points of intersection, are re-plotted as data
points in Fig. 10b, which also shows the thcoretical
constant strain-rate prediction of the model. Allow-
ing for errors arising from numerical integration of
the model equations and from the transecting op-
eration, it can be concluded that the proposed model
satisfies the correspondence requirement. Figure
11b is obtained from Fig. 11a in an entircly analo-
gous manner. Agreement between data points ob-
tained by transection and the theoretical constant-

stress solution again shows that the model satisfies
the correspondence requirement.

5. CONCLUSIONS

A differential constitutive model for polycrystal-

line ice which seeks to model the underlying physi-

cal deformation mechanisms on the basis of state

variable theory is presented in this paper. Instanta-
neous deformation is characterized by the classical
theory of linear elasticity, while the steady viscous
deformation-rate is described by Glen’s power-law.
The transient deformation-rate mechanism is mod-
eled by the interaction between the thermally-acti-
vated soft and hard deformation systems which
gives rise to an internal drag-stress and an elastic
back-stress. The rate-dependent evolution of the
drag- and back-stresses respectively govern iso-
tropic and kinematic hardening in the material.
Since hardening is directly related to transient de-
formations, the recoverability of transient strains
(representative of delayed elastic or anelastic de-
formation) depends on the presence of a non-zero
elastic back-stress. Dimensional requirements
identified by Ashby and Duval (1985) for the creep
and constant strain-rate response of polycrystalline
ice are satisfied by the model.

The uniaxial mode! contains a total or six param-
eters that can be determined from conv:ntional ex-
perimental tésting methods for ice. The model
follows creep and recovery data on ice, specifically
those of Jacka (1984), Sinha (1978). and Brill and
Camp (reproduced in Sinha, 1979). Pradictions of
the ratio of transient to total strain agree qualita-
tively with Sinha’s equation if grain-siz: effects are
taken into account. The response of the model un-
der monotonically increasing stress follows the data
obtained by Sinha (1983) from constant displace-
ment-rate tests. Validation of constan! strain-rate
predictions suffers from a lack of comprehensive
data on deformation involving pure flow (no mi-
crocracking-induced damage or recrystallization),
but the proposed model predicts the vorrespond-
cnce between constant-stress creep and constant
strain-rate response observed experimentally by
Mellor and Cole (1982, 1983).
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